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EQUATIONS OF ISOTROPIC DEFORMATION OF GAS-SATURATED MATERIALS WITH 

ALLOWANCE FOR LARGE STRAINS OF SPHERICAL PORES 

V. A. Buryachenko and A. M. Lipanov UDC 539.4 

We will examine a composite medium consisting of a homogeneous isotropic matrix and 
spherical pores saturated with gas. The character of location of the pores is assumed to 
be statistically uniform. The effective-field method was used in [1-3] to obtain equations 
of state of gas-saturated porous media with the assumption of small strains of the pores and 
the medium as a whole [i]. In the case of large general strains, it is natural to examine 
methods of solution involving the use of successive approximations [4], such as was done in 
in an examination of composite media by the method of conditional functions [5]. The 
latter method is based on the assumption that the stress field is uniform within each compo- 
nent of the composite - an assumption which leads to large errors in evaluating the effective 
parameters of linearly elastic media compared to the effective-field method [i, 2]. The 
authors of [6, 7] analyzed arbitrarily large strains for the special case of isotropic defor- 
mation of a material with spherical pores and an incompressible matrix, using a cellular model 
to perform the analysis. Here, we solve a similar problem with allowance for the effect of 
gas pressure in the pores, and we make use of the ideas behind the effective-field method 
[I, 2] in doing so. The usefulness of this method has been proven in studies of linear prob- 
lems for micro-inhomogeneous media. 

i. Physical Model. In a number of cases of practical importance, it is of interest 
to study the volumetric deformation of rubber-like materials with a low (~1%) porosity. For 
the sake of determinateness, we will describe the strain properties of the matrix with a 
Mooney potential [4]. The authors of [i] showed that in linear problems of gas-saturated 
porous media, the effects of binary interaction of inclusions are unimportant for spherical 
pores in an incompressible matrix in the case of low porosity. Here, the effective bulk 
modulus is determined by the solution of the linearly elastic problem of a single inclusion 
in a matrix with a certain effective stress field specified at infinity. Thus, it is accept- 
able to make use of the cellular model in [6, 7]. This model presumes equivalent strain prop- 
erties for a porous medium and a thick-walled spherical shell and equality of the ratio of 
the volumes of the pore and spherical element to the porosity of the composite medium being 
modeled. Here, we will use the positive ideas behind the effective-field method and we will 
place the spherical element in a matrix with a prescribed effective stress field at infinity 
which differs from the acting stress field. We find the parameters of this field by the 
self-consistent effective-field method [i, 3]. The method makes it unnecessary to postulate 
the relationship between the relative dimensions of the spherical element and the porosity of 
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the medium, but it presumes that this porosity is small enough so that in the event of a 
large strain of the surface of the pores, the strains of the surface of the spherical element 
will remain small. 

2:. Effective-Field Method in Linear Problems of Micro-Inhomo~eneous Media. We present 
certain relations which follow from [i, 2] and which will prove useful in the discussions 
tO follow. In a linearly elastic medium with the modulus L0, let there be distributed a 
Poisson set X = (Xk, rk, Vk) of spherical pores v k with centers at x k. The pores have the 
radii r k and characteristic functions V k. The pressure of the gas in the pores is p. Then 
the equation of state of the material has the form 

o(x) = (i  -~ V(x))Loe(x)- V(x)q. ( 2 . 1 )  

H e r e ,  q = P 6 i j  i s  a d i v a l e n t  t e n s o r ;  V(x)= U Vh(x); o and  E a r e  t h e  s t r e s s  and  s s  t e n s o r s .  
h 

I n  t h e  c a s e  o f  i s o t r o p y  o f  t h e  c o m p o n e n t s  

L0 = (3k0, 2~0) = 3 k c V l + 2 ~ 0 N ~ ,  

N1 = (l/3)Si~Saz, N~ = (i/3)(Sih~jz t 8u~jk - -  (2/3)SijSkl). 

E q u a t i o n  ( 2 . 1 )  d i f f e r s  f r o m  t h e  e q u a t i o n  a d o p t e d  i n  [8]  

~(x) = (t  -- V(x))Lo(z)e(z) -5 (L2e(x) -- qo) V(x), ( 2 . 2 )  

w h e r e  L 2 = ( 3 k 2 ,  2~ 2) i s  t h e  i s o t r o p i c  e l a s t i c  m o d u l u s  o f  t h e  p o r e  p h a s e ;  ~2 = 0 i s  t h e  s h e a r  
m o d u l u s ;  k 2 ~ 0;  q0 = P 0 6 i j ;  P0 i s  t h e  g a s  p r e s s u r e  i n  t h e  u n d e f o r m e d  i n i t i a l  m a t e r i a l .  Use  
o f  t h e  c u r r e n t  p r e s s u r e  p ( 2 . 1 )  r a t h e r  t h a n  t h e  i n i t i a l  p r e s s u r e  P0 ( 2 . 2 )  l e a d s  t o  " d i s a p -  
p e a r a n c e "  o f  t h e  b u l k  m o d u l u s  o f  t h e  p o r e  p h a s e  and  s i m p l i f i c a t i o n  o f  t h e  s u b s e q u e n t  c a l c u -  
l a t i o n s .  

Insertion of (2.1) into the equilibrium equation dive = 0 and subsequent solution of 
the resulting relations by the effective-field method [i] make it possible to evaluate the 
effective parameters L, and eq of the equation of the macroscopic state 

<o> = L, (<e> -- eq), eq = (L: I -- L~1)q (2.3) 

(< . . .>  denotes the operation of averaging over the micro-volume of the porous medium). In 
the case of spherical pores of one size, we obtain [i] L, = (3k,, 2~), where 

3k.  = (4~0/c) [t - -  (29/24) c]; ( 2 . 4 )  

2~ ,  = 2~0 i t + (5/3) c [1 - -  (35/24) c] -~ }-~. ( 2 . 5 )  

Here, the terms in the brackets, describing binary interaction of inclusions, are unimportant 
in the case of low porosity c = <V> compared to the terms obtained from the solution of the 
problem of a single pore in a matrix with an effective field e assigned at infinity [i]. In 
the present case, this field is equal to 

= D~((e)  -]- J ) ,  D ~ = ( [ l  - -  (29/24)c] =1, [i - -  (35/24)c]-~)i J = ((5/24)cp, 0). ( 2 . 6 )  

In fact, with a porosity c = IZ, the bulk modulus k~ evaluated from (2.4) with and with- 
out allowance for binary interaction of the inclusions is equal to 131.7~0 and 133.3~0, re- 
spectively. The shear modulus ~, in the case of low porosity dependsslightly on c; with 
a decrease in c by a factor of 4 (from 2 to 0.5%), ~, increases by only 2.5% - from 0.97~ 0 
to 0.99~ 0 . 

Let us analyze a problem we will need later on - the problem of the deformation of a 
composite medium consisting of a linearly elastic matr4x with a modulus L 0 and a Poisson set 

' ,r r(~) ~(k)) of spherical inclusions Vk with centers at Xk, radii rk, characteristic X = (xk ,  rk, r h ,  ~ 1  , 

functions Vk, moduli L o - } - L ~  ) , and the parameter a(k) .  Thus, the local  equation of s t a t e  
has the form 

a(~ = L(x)(e(x) -- a(x)). ( 2 . 7 )  

Here, a(x) = 0, L(x) = L 0 at V(x) = 0 and L(x) = Lo+L~ ), ~(x) = ~(a)at x~vh. Equation (2.7) 
formally coincides with the equation of thermoelasticity of a composite medium [2] with a 
zero coefficient of linear expansion of the matrix. To evaluate the effective parameters 
of the composite medium L,, ~e in the equation 

<6> = L, (<e> -- a,) (2.8) 
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this coincidence allows us to make use of the effective-field method [2] 

L ,  = L o (I + LoD <BM1V>) -1, a ,  = D <B~V>, (2 .9 )  

where the study [2] presented the following expression for the tensor of the stress concen- 
tration B for an isolated inclusion in an infinite matrix and the tensor of the stress con- 
centration D describing the effect of the surrounding inclusions: /~fl(x)~ (L 0 + L~)) -I- L~ I 

at x ~ V  h. 

3. Calculation of the Spherical Element. We will examine a thick-walled spherical 
shell with internal and external radii in the undeformed state R I and R 2. The strain prop- 
erties of the material are described by a Mooney potential with the constants a I, a 2 

W = al( 6 - -  3 ) i +  a2( G - -  3) ( 3 . 1 )  

[I i (i = i, 2, 3) are invariants associated with the Lagrangian strain tensor; under condi- 
tions of central-symmetrical deformation, these invariants are connected with the extensions 
I by the relations 11 = 312 , 12 = 3A 4, 13 = k6]. The extension parameter I determines the 
relation describing the distances of points of the element to the center of the shell before 
and after deformation R = l-lr. For the internal and external surfaces of the shell, we 

obtain r I = IxR I and r 2 = 12R 2. 

In the case of loading of the shell by internal and external pressures Pl and P2, the 
solution for large strains of the spherical element is known [6, 9]: 

- -  P2 = al [~/k~ + 4/k2 - -  ( l /k~ + 4kl ) ]  + 2a2 [t lk~ - - [2k  2 - -  (tlk~ - -  2k l ) ]  - -  pl ,  ( 3 . 2 )  

For an incompressible material, we have the equality r~ - R~ = r~ - R~. Then, using the 
3 3 parameter 7 = RI/R 2 characterizing the relative fraction of the pore volmne in the undeformed 

spherical element, we find 

~ = ( ~ - -  i)/~ + i .  (3.3) 

Equations (3.2) and (3.3) allows us to use assigned values of Pl and P2 to find I l and 
12 . We henceforth choose y to be small enough so that $ is small in the expression 12 = i + 

and I~ = 35/y + i. Then the spherical element can be replaced by a linearly elastic sphere 
whose strain properties are described by Eq. (2.7) with the moduli 

L(x) = L e =  (3k e, 2~e), ~ ( ~  = e = 3~e5~  ( 3 . 4 )  

where ~e is found from the solution of (3.2) and (3.3) with p: = 0 and k e = p2/(l + ~e - A2); 
~e = ~,; due to the small effect of porosity on ~, with small c, we used Eq. (2.5), obtained 
with small strains of the pores, for ~e 

4. Evaluation of the Effective Parameters of the Medium. In accordance with the phys- 
ical model of a gas-saturated porous medium, we will assume that its isotropic deformation is 
equivalent to the isotropic deformation of a composite medium consisting of a matrix with the 
modulus L 0 = (3k 0, 2~0), k 0 = ~, ~0 = 2(al + a2) and a Poisson set of spherical inclusions 
with the modulus L e and the parameter ~e (3.4). For the sake of determinateness, we will 
examine inclusions of one size with the degree of fullness c e = co/7 (c o is the porosity in 
the undeformed state). Then the equation of isotropic deformation is described by Eqs. (2.8) 
and (2.9). In the latter equations, the tensors B and D are expressed in a known manner in 
terms of the quantities L0, L e, and c e [2]. 

The parameter ~, in (2.8) depends on the gas pressure Pl, which in turn is determined 
by the deformation of the pore phase. In the case where the empirically established mean- 
volume concentration of gas w in the macro-region is assigned, then in accordance with the 
laws discovered by Henry and Mendeleev-Clapeyron [i] 

Pl = W [ ( l  - -  C%~) r + c%~'/R'T]| ( 4 . 1 )  

Here, the first term in brackets with the Henry constant F describes the contribution of the 
mean concentration of gas dissolved in the solid phase. The second term accounts for the 
presence of gas with a molecular weight ~' at the temperature T in the pore phase; R' is the 
gas constant. Equation (4.1) obviously generalizes to a mixture of gases. 

It should be noted that the individual assumptions made here are not fundamental and 
can be made less restrictive. In fact, one important assumption is that the strains of the 
external surface of the spherical element are small, which allowed us to reduce the problem 
to a linear problem (2.7) and solve it by the effective-field method [2]. In the case of large 
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strains of the pores, this assumption makes it necessary to select a sufficiently small value 
of y (3.3) - which can be done only in the case of low porosity. The assumptions made re- 
garding the incompressibility of the matrix and the use of the Mooney potential (3.1) are re- 
quired only in an analytical solution of the problem for a spherical element (3.2), (3.3). 
In the general case, we can examine any elastic potential of strain energy W with a numeri- 
cal solution of the problem for the spherical element (3.4). 

As an example, we will examine different cases of isotropic loading of a gas-saturated 
porous medium. Let <o> = 0. We will find the macroscopic strain of the medium <e> and the 
porous phase c(k~ - i) with different values of Pl. We take values characteristic of raw 
rubber: a I ffi 0.i MPa, a 2 = 0.01MPa [6], and c ffi 10 -3 . Curves 1 and 2 in Fig. 1 (for y = 10 -2 
and-2"10 -3) were calculated from nonlinear theory (2.8), (3.4), while the dashed curve was calcu- 
lated from linear relations (2.3), (2.4). The small difference between the curves is attri- 
butable to the self-consistency of the estimates of D and B (2.9) obtained by the effective- 
field method. We can use Fig. 1 to evaluate the difference in the results calculated by 
means of the linear and nonlinear models for moderate values of Pl, while the additional use 
of Eq, (4.1) makes it possible to find the value of the mean-volume gas concentration w neces- 
sary for the given loading regime. Curves i, 4 and 2, 3 in Fig. 2 show the volumetric de- 
formation of the medium with Pl = 0, c = 10 -3 , and c = 5"10 -3 , respectively. Lines 3 and 4 
were calculated from linear theory (2.3), (2.4), while lines 1 and 2 were calculated from 
the nonlinear theory. With a negative hydrostatic stress, the curves <Oil> = <oii>(<eii>) 
have a vertical asymptote. At small c, this asymptote is equal to <eii>= c o , and it ap- 
proaches the y axis <eli> = 0 with a decrease in c o . There is no vertical asymptote with 
isotropic expansion, and even at c = 10 -3 isotropic expansion of the medium may exceed the 
value <eli> = 0.1. Since a material always contains a certain number of pores, it follows 
that perfectly isotropic inextensible materialsdo not exist. Thus, there arises the ques- 
tion of the validity of using the Mooney potential in the region of large isotropic exten- 
sions. Moreover, the parameters of different elastic potentials of isotropically deformable 
materials are generally determined in hydrostatic compression [i0]. In lightof the above 
analysis, the use of these parameters in the region of large hydrostatic tension would appear 
to be incorrect. 
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ELASTOPLASTIC PROPERTIES OF MULTICOMPONENT COMPOSITES 

L. A. Saraev UDC 539.378 

Predicting the inelastic properties of materials with random discontinuities is one 
of the most important current developments in the mechanics of deformable solids. Modeling 
the macroscopic governing relations and calculating the effective characteristics of such 
media in many cases permits satisfactory estimation of the strain properties, limiting state, 
and load-carrying capacity of structural elements made of composites, powders, and other 
types of structural materials. The macroscopic behavior of multicomponent rigid-plastic and 
elastoplastic composites was examined in [I, 2] within the framework of flow theory. 

Here, we examine the use of the method of generalized singular approximation of the 
theory of random fields to describe small elastoplastic strains of composite materials with 
an arbitrary number of constituents. A similar problem was solved in a correlation approxi- 
mation in [3, 4]. 

Let a micro-inhomogeneous medium occupying a volume V bounded by the surface S be com- 
posed of n different elastoplastic constituents connected to each other with ideal adhesion~ 
The governing relations for the material of each constituent are given by the equations 

sii = 2~8(skz)eij, op~ = 3K~%v (s = l ,  2 . . . . .  n). ( 1 )  

H e r e ,  sij = ~ i J -  (t/3)6ijapp; e~j = e i l -  (i/3)~j%p; o ij, e~  a r e  c o m p o n e n t s  o f  t h e  s t r e s s  and  s t r a i n  
t e n s o r s ;  ~(ekz) i s  t h e  s h e a r  m o d u l u s  o f  p l a s t i c i t y ;  K s i s  t h e  b u l k  m o d u l u s  o f  t h e  s - t h  c o n -  
s t i t u e n t  (K s = c o n s t ) .  

The  s t r u c t u r e  o f  s u c h  a c o m p o s i t e  c a n  b e  d e s c r i b e d  by  a s e t  o f  r a n d o m  i n d i c a t o r  f u n c -  
t i o n s  o f  t h e  c o o r d i n a t e s  • u2(r) . . . . .  un(r) .  M e a n w h i l e ,  e a c h  f u n c t i o n  us(r) i s  e q u a l  t o  u n i t y  on 
t h e  s e t  o f  p o i n t s  o f  t h e  s - t h  c o n s t i t u e n t  and  i s  e q u a l  t o  z e r o  o u t s i d e  t h i s  s e t .  U s i n g  t h e s e  
f u n c t i o n s ,  we c a n  w r i t e  t h e  l o c a l  g o v e r n i n g  e q u a t i o n s  ( 1 )  i n  t h e  f o r m  

i ~ sij (r) = 2 ~ (ehl (r)) U8 (r) eij (r), avv (r) = 3 ~.~ Ksu.  (r) evp (r). ( 2 )  

All of the functions us(r) of stress and strain are presumed to be statistically uniform and 
ergodically random fields, and their mathematical expectations are replaced by the mean val- 
ues over the volumes of the constituents V s and over the total volume of the composite 

s=l V~ V 

Establishing the macroscopic governing equations and effective constants of such a com- 
posite mean determining the relation between the macrostresses <oij> and the macrostrains 
<eij>. The general form of this relation is expressed in the present case by the formula 

<%> = E~hz (<~>) <~kz> (3) 

(Ei~t(<emn>) are components of the fourth-rank tensor of the plastic moduli). Here and below, 
an asterisk denotes an effective value of a quantity. 

To derive Eqs. (3), it is necessary to statistically average the system of equations de- 
scribing the deformation of an inhomogeneous medium. This system consists of (2), the equi- 
librium equations 

aip,p(r) = 0 ( 4 )  

and  t h e  C a u c h y  f o r m u l a s  

2eij(r) = u~,~(r) + uj,i(r), ( 5 )  
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